![]() |
|
Streamlit with Python Build and Deploy Real-World Data Apps - Printable Version +- Nice1 Community Forum (https://talk.nice1.org) +-- Forum: Nice1 Community (https://talk.nice1.org/forumdisplay.php?fid=3) +--- Forum: Media (https://talk.nice1.org/forumdisplay.php?fid=9) +--- Thread: Streamlit with Python Build and Deploy Real-World Data Apps (/showthread.php?tid=3675) |
Streamlit with Python Build and Deploy Real-World Data Apps - Courses2025 - 02-07-2026 ![]() Free Download Streamlit with Python Build and Deploy Real-World Data Apps Published 2/2026 MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz Language: English | Size: 9.73 GB | Duration: 16h 22m Build interactive data apps with Streamlit & Python, from basics to deployment, using real-world projects and dashboards What you'll learn Build interactive, production-ready data applications using Streamlit and Python Design clean and responsive Streamlit layouts with reusable components Capture and manage user inputs, events, and session state effectively Visualize data using tables, metrics, charts, and interactive plots Create multi-page Streamlit applications with shared state and navigation Optimize app performance using caching and state management techniques Integrate Streamlit apps with databases and external APIs Customize UI using themes, CSS, and branding techniques Deploy Streamlit applications to cloud and production environments Build and deploy real-world projects, including a Personal Finance Tracker & Budget Planner Requirements Enthusiasm and determination to make your mark on the world! Description A warm welcome to Streamlit with Python: Build and Deploy Real-World Data Apps course by Uplatz. Streamlit is an open-source Python framework that lets you build interactive web apps for data, analytics, and machine learning-using only Python No HTML, CSS, or JavaScript required. If you can write a Python script, you can build a web app. It's widely used by data scientists, analysts, ML engineers, and Python developers to turn scripts and notebooks into shareable apps in minutes. How Streamlit Works Streamlit follows a script-based execution model You write a normal Python script You use st * commands (like st button, st dataframe, st line_chart) Streamlit runs your script top to bottom Every user interaction (button click, slider move) re-runs the script Streamlit automatically updates the UI in the browser Key Idea Your Python script is your web app No routes, no callbacks, no frontend state headaches. Behind the Scenes (What Happens Internally) Python code runs on the backend Streamlit Detects UI elements Sends UI state to the browser Re-executes the script on interaction Session state keeps track of user-specific data Caching prevents unnecessary recomputation This makes Streamlit Extremely fast to develop Easy to reason about Ideal for data-driven apps Main Features of Streamlit 1. Rapid App Development Build apps in minutes, not days No frontend knowledge required Minimal boilerplate code 2. Rich UI Components Out of the box support for Text, markdown, metrics Buttons, sliders, checkboxes Forms and input widgets Tables and editable dataframes 3. Powerful Data Visualization Native charts (st line_chart, st bar_chart) Full support for Matplotlib Seaborn Plotly Altair Interactive dashboards with minimal code 4. Session State & Caching st session_state for user-specific data Caching for Data loading Expensive computations Major performance boost for real apps 5. Multi-Page Applications Build multi-page dashboards Shared navigation and state Clean project structure for large apps 6. File Handling & Media Support Upload CSV, Excel, images, audio, video processed files Great for tools and internal utilities 7. Database & API Integration Connect to SQL databases Cloud databases REST APIs Build fully data-driven applications 8. Styling & Theming Built-in themes Custom CSS injection Branding-ready UIs 9. Easy Deployment Streamlit Community Cloud Docker AWS, Azure, GCP Works well with CI/CD pipelines What Streamlit Is Best For Data dashboards ML model demos Internal tools Analytics apps Rapid prototypes Personal or startup projects Not ideal for Heavy frontend animations Complex SPA-style apps Highly custom UI logic Streamlit lets you turn Python scripts into interactive web apps with zero frontend code. Why Take This Streamlit Course? Streamlit is one of the fastest ways to turn Python code into real, usable applications. This course focuses on practical, real-world usage, not just isolated features. You won't just learn Streamlit-you'll build complete applications, understand production best practices, and confidently deploy your apps. This course is designed to help you move from Python scripts ➜ interactive web apps Notebooks ➜ shareable dashboards Ideas ➜ deployable products Course Overview This course takes a hands-on, project-driven approach to Streamlit. You'll start with Streamlit fundamentals and gradually move into UI layout and interactivity Data visualization and editable data apps State management and performance optimization Multi-page app architecture Database and API integrations Styling, theming, and branding Deployment and production workflows Each concept is explained with clear examples and then applied to real-world use cases. Hands-On Projects Included Throughout the course, you'll build practical applications, including Interactive data dashboards Multi-page Streamlit applications Data editing and validation tools API-driven data apps Production-ready deployed apps Capstone Projects End-to-End Streamlit Capstone Application Personal Finance Tracker & Budget Planner These projects reinforce everything you learn and can be added to your portfolio or GitHub. What Makes This Course Different Focus on real-world app building, not toy examples Covers deployment and production, not just development Includes multi-page apps and state management Ideal balance of simplicity + professional practices Beginner-friendly but still valuable for experienced developers How This Course Is Taught Clear, step-by-step explanations Hands-on coding demonstrations Practical examples over theory Real-world project workflows Clean, structured progression You'll always understand why something is used-not just how. After Completing This Course, You'll Be Able To Build interactive data apps using Streamlit and Python Design clean, user-friendly Streamlit interfaces Manage application state and performance efficiently Create multi-page Streamlit applications Integrate databases and APIs into your apps Deploy Streamlit apps to cloud and production environments Confidently showcase Streamlit projects professionally Streamlit with Python: Build and Deploy Real-World Data Apps - Course Curriculum Module 1: Getting Started with Streamlit What is Streamlit and Why It Matters Installing Streamlit and Environment Setup Running Your First Streamlit App Understanding the Streamlit App Lifecycle Module 2: Core Components and App Layout Streamlit Page Structure Text, Markdown, and Media Elements Layout Control with Containers, Columns, and Expanders Best Practices for Clean App Design Module 3: User Input Widgets and Interactivity Buttons, Sliders, Checkboxes, and Radio Buttons Text Inputs and Select Boxes Forms and User Interaction Flow Handling User Events Effectively Module 4: Data Visualization with Streamlit Displaying Tables and Metrics Plotting with Matplotlib and Seaborn Interactive Charts with Plotly Choosing the Right Visualization for Your Data Module 5: Advanced DataFrames and Editors Displaying Large DataFrames Efficiently Using st data_editor Editable Tables and Validation Real-World Data Editing Scenarios Module 6: State Management and Caching Understanding Session State Managing User Sessions Caching Data and Functions Performance Optimization Techniques Module 7: Specialized Streamlit Features File Uploads and s Media Handling (Images, Audio, Video) Progress Bars and Status Messages Custom Components Overview Module 8: Building Multi-Page Streamlit Applications Creating Multi-Page App Structures Navigation and Page Routing Sharing State Across Pages Designing Scalable App Architectures Module 9: Styling, Themes, and UI Customization Custom Themes and Layout Styling Using CSS with Streamlit Branding Your Streamlit App Improving UX and Visual Appeal Module 10: Database and API Integration Connecting Streamlit to Databases Working with SQL Queries Consuming REST APIs Building Data-Driven Applications Module 11: Deployment and Production - Part 1 Preparing Streamlit Apps for Deployment Environment Configuration Secrets Management Common Deployment Pitfalls Module 12: Deployment and Production - Part 2 Deploying on Streamlit Cloud Deploying on Cloud Platforms (AWS / GCP / Azure Overview) Performance and Scaling Considerations Monitoring and Maintenance Module 13: Capstone Project - End-to-End Streamlit Application Project Planning and Architecture Building a Complete Production-Grade App Applying Best Practices Learned Final Review and Enhancements Module 14: Real-World Project - Personal Finance Tracker & Budget Planner Designing the Finance Tracker Expense Tracking and Budget Logic Data Visualization and Insights Deploying the Final Project Who this course is for Python developers who want to build interactive web applications without learning frontend frameworks Data analysts and data scientists looking to convert notebooks into shareable, production-ready dashboards Machine learning practitioners who want to deploy models as simple web apps Business analysts and professionals who want to create data-driven tools and internal dashboards Students and beginners in data analytics or Python seeking hands-on, project-based learning Startup founders and product builders who want to quickly prototype data applications Anyone interested in building dashboards, tools, or internal apps using Python Homepage Code: https://www.udemy.com/course/streamlit-with-python-build-and-deploy-data-appsRecommend Download Link Hight Speed | Please Say Thanks Keep Topic Live | FileHost -> Rapidgator | DDownload sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part07.rar sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part08.rar sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part03.rar sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part04.rar sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part11.rar sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part01.rar sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part06.rar sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part02.rar sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part09.rar sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part10.rar sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part05.rar Rapidgator Recommend Download Link sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part03.rar.html sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part01.rar.html sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part05.rar.html sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part11.rar.html sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part08.rar.html sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part06.rar.html sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part02.rar.html sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part04.rar.html sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part09.rar.html sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part10.rar.html sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part07.rar.html AlfaFile https://alfafile.net/file/Adj82/sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part03.rar https://alfafile.net/file/Adj85/sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part04.rar https://alfafile.net/file/Adj8D/sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part06.rar https://alfafile.net/file/Adj8K/sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part07.rar https://alfafile.net/file/Adj8M/sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part05.rar https://alfafile.net/file/Adj8T/sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part10.rar https://alfafile.net/file/Adj8Y/sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part09.rar https://alfafile.net/file/Adj8f/sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part08.rar https://alfafile.net/file/Adj8q/sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part01.rar https://alfafile.net/file/Adj8s/sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part02.rar https://alfafile.net/file/AdjAZ/sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part11.rar FreeDL sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part03.rar.html sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part11.rar.html sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part04.rar.html sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part10.rar.html sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part02.rar.html sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part05.rar.html sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part07.rar.html sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part08.rar.html sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part01.rar.html sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part09.rar.html sjppj.Streamlit.with.Python.Build.and.Deploy.RealWorld.Data.Apps.part06.rar.html No Password - Links are Interchangeable |